Nonhomogenous, Linear, Second– Order, Differential Equations

Larry Caretto Mechanical Engineering 501AB Seminar in Engineering Analysis

October 4, 2017

California State University Northridge

13

California State University Northridge

Nonhomogeneous Equations III • Substitute solution $y = y_H + y_P$ into the nonhomogeneous equation $\frac{d^2(y_H + y_P)}{dx^2} + p(x)\frac{d(y_H + y_P)}{dx} + q(x)(y_H + y_P) = r(x)$ $\frac{d^2y_H}{dx^2} + \frac{d^2y_P}{dx^2} + p(x)\frac{dy_H}{dx} + p(x)\frac{dy_P}{dx} + q(x)y_H + q(x)y_P = r(x)$ $\frac{d^2y_H}{dx^2} + p(x)\frac{dy_H}{dx} + q(x)y_H + \frac{d^2y_P}{dx^2} + p(x)\frac{dy_P}{dx} + q(x)y_P = r(x)$ Homogeneous Equation = 0 $\frac{d^2y_P}{dx^2} + p(x)\frac{dy_P}{dx^2} + p(x)\frac{dy_P}{dx^2} + p(x)\frac{dy_P}{dx} + q(x)y_P = r(x)$

Example: solve $\frac{d^2 y_P}{dx^2} + 3\frac{dy_P}{dx} + 2y_P = x^2$ • Assume $y_P = a_0 + a_1 x + a_2 x^2$ • Substitute y_P , $dy_P/dx = a_1 + 2a_2x$ and $d^2y_P/dx^2 = 2a_2$ into differential equation $2a_2 + 3(2a_2x + a_1) + 2(a_2x^2 + a_1x + a_0) = x^2$ • Set coefficient sums of like terms (like powers of x in this example) to zero • $2a_2 + 3a_1 + 2a_0 = 0$ for x^0 terms • $6a_2 + 2a_1 = 0$ for x^1 terms • $2a_2 = 1$ for x^2 terms • a_1 , and a_2 solved on next slide 18

Example: solve
$$\frac{d^2 y_p}{dx^2} + 3\frac{dy_p}{dx} + 2y_p = x^2$$

• $2a_2 + 3a_1 + 2a_0 = 0 \Rightarrow a_0 = -a_2 - 3a_1/2$
• $6a_2 + 2a_1 = 0 \Rightarrow a_1 = -3a_2$
• $2a_2 = 1 \Rightarrow a_2 = \frac{1}{2}$ so $a_1 = -3a_2 = -3/2$
• $a_0 = -a_2 - 3a_1/2 = -1/2 - 3(-3/2)/2 = 7/4$
• So $y_p = a_0 + a_1 x + a_2 x^2 = 7/4 - 3x/2 + \frac{x^2}{2}$
• Check this: y_p " + $3y_p$ ' + $2y_p = 1 + 3(x - 3/2) + 2(7/4 - 3x/2 + \frac{x^2}{2}) = 1 - 9/2 + 7/2 + \frac{x^2}{2} = x^2$ proving solution for y_p

Example: solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x^2$$
• Just found $y_P = 7/4 - 3x/2 + x^2/2$
• Characteristic equation for homogenous
ODE has two distinct real roots
$$\lambda = \frac{-\alpha \pm \sqrt{\alpha^2 - 4\beta}}{2} = \frac{-3 \pm \sqrt{3^2 - 4(2)}}{2} = -2, -1$$
• $y = y_H + y_P = C_1 e^{-2x} + C_2 e^{-x} + 7/4 - 3x/2 + x^2/2$
• Find C₁ and C₂ from initial conditions such as $y(0) = y_0$ and $y'(0) = v_0$

- Undetermined coefficients is simpler approach but is limited

 Constant coefficient equations
 - Limited set of functions
- Variation of parameters is more complex, but handles more cases
- In reality, there are no general methods to get homogenous solution to linear, second-order ODE without constant coefficients

California State University Northridge

37

Check Initial Conditions II • $y' = -2[52/377 - y_0 - v_0]e^{-2x} - [2y_0 + v_0 - 29/377]e^{-x} + 115sin(5x)/377 + 75cos(5x)/377$ • $y'(0) = -2[52/377 - y_0 - v_0]e^{-0} - [2y_0 + v_0 - 29/377]e^{-0} + 115sin(0)/377 + 75cos(0)/377$ • $y'(0) = -2[52/377 - y_0 - v_0] - [2y_0 + v_0 - 29/377]e^{-0} + 115sin(0)/377 + 75cos(0)/377$ • $y'(0) = -2[52/377 - y_0 - v_0] - [2y_0 + v_0 - 29/377]e^{-0} + 75/377 = [-104 + 29 + 75]/377 + 2y_0 + 2v_0 - 2y_0 - v_0 = v_0$ Correct y'(0)!

43