Nonhomogenous, Linear, Second– Order, Differential Equations

Larry Caretto Mechanical Engineering 501AB **Seminar in Engineering Analysis**

October 4, 2017

Northridge

ME 501A Seminar in Engineering Analysis Page 1

$$
\frac{d^2y_H}{dx^2} + p(x)\frac{dy_H}{dx} + q(x)y_H = 0
$$

13

• y_P is particular solution

Northridge

Nonhomogeneous Equations III • Substitute solution $y = y_H + y_P$ into the nonhomogeneous equation $\frac{d^2(y_H + y_P)}{dx^2} + p(x)\frac{d(y_H + y_P)}{dx} + q(x)(y_H + y_P) = r(x)$ $\frac{d^2y_H}{dt^2} + \frac{d^2y_P}{dt^2} + p(x)\frac{dy_H}{dt} + p(x)\frac{dy_P}{dt} + q(x)y_H + q(x)y_P =$ $\frac{d^2y_H}{dx^2} + \frac{d^2y_P}{dx^2} + p(x)\frac{dy_H}{dx} + p(x)\frac{dy_P}{dx} + q(x)y_H + q(x)y_P = r(x)$ $\frac{\partial^2 y_p}{\partial t^2} + p(x) \frac{dy_H}{dx} + p(x) \frac{dy_P}{dx} + q(x) y_H + q(x) y_P = r(x)$ 2 *dx* $\frac{d^2y_{H}}{dx^2} + p(x)\frac{dy_{H}}{dx} + q(x)y_{H} + \frac{d^2y_{P}}{dx^2} + p(x)\frac{dy_{P}}{dx} + q(x)y_{P} = r(x)$ $\left(x\right) \frac{dy_{H}}{dx} + q(x)y_{H} \left| + \frac{d^{2}y_{P}}{dx^{2}} + p(x)\frac{dy_{P}}{dx} + q(x)y_{P} = r(x)$ 2 $\frac{d^2 y_p}{dx^2} + p(x) \frac{dy_p}{dx} + q(x) y_p = r(x)$ **Northridge** 15

Solving
$$
\frac{d^2 y_p}{dx^2} + \alpha \frac{dy_p}{dx} + \beta y_p = r(x)
$$

\n**Method of undetermined coefficients**
\napplies for constant coefficient equation
\n- Assume a solution for y_p based on the form
\nof $r(x)$ with constants
\n- Process for assuming y_p to be described later
\n- E.g., if $r(x) = x^2$ assume a solution of the
\nform $y_p = a_0 + a_1 x + a_2 x^2$
\n- Substitute proposed solution into the
\ndifferential equation for y_p
\n- Set coefficient sum of like terms in y_p to zero
\n- Solve for the unknown a_k coefficients in y_p
\n**Northridge**

on next slide₁₈ **Example:** solve $\frac{d^2y_p}{dx^2} + 3\frac{dy_p}{dx} + 2y_p = x^2$ • Assume $y_P = a_0 + a_1 x + a_2 x^2$ • Substitute y_P , dy_P/dx = a_1 + 2a₂x and $d^2y_P/dx^2 = 2a_2$ into differential equation $\frac{2y_p}{dx^2} + 3\frac{dy_p}{dx} + 2y_p = x$ *dx* $\frac{d^2y_p}{dt^2} + 3\frac{dy_p}{dt} + 2y_p =$ $2a_2 + 3(2a_2x + a_1) + 2(a_2x^2 + a_1x + a_0) = x^2$ • Set coefficient sums of like terms (like powers of x in this example) to zero • $2a_2 + 3a_1 + 2a_0 = 0$ for x^0 terms • $6a_2 + 2a_1 = 0$ for x¹ terms $\frac{3 \text{ equations for } a_0}{2 \text{ and } a \text{ solved}}$ • $2a_2 = 1$ for x^2 terms
Northridge a_1 , and a_2 solved

Example: Solve
$$
\frac{d^2 y_p}{dx^2} + 3\frac{dy_p}{dx} + 2y_p = x^2
$$

\n• $2a_2 + 3a_1 + 2a_0 = 0 \Rightarrow a_0 = -a_2 - 3a_1/2$
\n• $6a_2 + 2a_1 = 0 \Rightarrow a_1 = -3a_2$
\n• $2a_2 = 1 \Rightarrow a_2 = \frac{1}{2}$ so $a_1 = -3a_2 = -3/2$
\n• $a_0 = -a_2 - 3a_1/2 = -1/2 - 3(-3/2)/2 = 7/4$
\n• So $y_p = a_0 + a_1 x + a_2 x^2 = 7/4 - 3x/2 + x^2/2$
\n• Check this: $y_p'' + 3y_p' + 2y_p = 1 + 3(x - 3/2) + 2(7/4 - 3x/2 + x^2/2) = 1 - 9/2 + 7/2 + x(3 - 3) + x^2 = x^2$ proving solution for y_p

Example: Solve
$$
\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x^2
$$

\n**Just found** $y_P = 7/4 - 3x/2 + x^2/2$
\n**Characteristic equation for homogeneous**
\nODE has two distinct real roots
\n
$$
\lambda = \frac{-\alpha \pm \sqrt{\alpha^2 - 4\beta}}{2} = \frac{-3 \pm \sqrt{3^2 - 4(2)}}{2} = -2, -1
$$

\n**•** $y = y_H + y_P = C_1e^{-2x} + C_2e^{-x} + 7/4 - 3x/2 + x^2/2$
\n**• Find** C₁ and C₂ from initial conditions such as $y(0) = y_0$ and $y'(0) = v_0$

Table of Trial y_P Solutions For these $r(x)$ Start with this y_P $r(x) = Ae^{ax}$ $|y_P = Be^{ax}$ $r(x) = Ax^n$ $|y_P = a_0 + a_1x + ... + a_nx^n$ $r(x)$ = Asin ωx $y_P = B \sin \omega x + C \cos \omega x$ $r(x) = A\cos \omega x$ $r(x) = Ae^{ax} \sin \omega x$ $y_P = e^{ax} (B \sin \omega x +$
 $r(x) = Ae^{ax} \cos \omega x$ C cos ωx) $r(x) = Ae^{ax}cos \omega x$ 24 **Northridge**

- Variation of parameters is more complex, but handles more cases
- In reality, there are no general methods to get homogenous solution to linear, second-order ODE without constant coefficients

Northridge

- For right-hand-side 2cos(5x) use particular solution $y_P = A\cos(5x) + B\sin(5x)$
- $dy_p/dx = -5Asin(5x) + 5Bcos(5x)$
- $d^2y_p/dx = -25Acos(5x) 25Bsin(5x)$
- Use ODE for $y_P: y'' + 3y' + 2y = 2\cos(5x)$
- $-25A\cos(5x) 25B\sin(5x) + 3[-5Asin(5x)]$ + 5Bcos(5x)] + 2[Acos(5x) + Bsin(5x)] = 2cos(5x) and set coefficients of sine and cosine terms to zero

38
 Northridge 38

37

Check Initial Conditions II • y' = -2[52/377 – y₀ – v₀]e^{-2x} – [2y₀ + v₀ – 29/377]e-x + 115sin(5x)/377 + 75cos(5x)/377 • y'(0) = -2[52/377 – y₀ – v₀]e⁻⁰ – [2y₀ + v₀ – 29/377]e-0 + 115sin(0)/377 + 75cos(0)/377 • y'(0) = -2[52/377 – y₀ – v₀] – [2y₀ + v₀ –

ME 501A Seminar in Engineering Analysis Page 8

Check Initial Conditions II
$r' = -2[52/377 - y_0 - v_0]e^{-2x} - [2y_0 + v_0 - 9/377]e^{-x} + 115\sin(5x)/377 + 75\cos(5x)/377$
$r'(0) = -2[52/377 - y_0 - v_0]e^{-0} - [2y_0 + v_0 - 9/377]e^{-0} + 115\sin(0)/377 + 5\cos(0)/377$

•
$$
y'(0) = -2[52/377 - y_0 - v_0] - [2y_0 + v_0 - 29/377] + 75/377 = [-104 + 29 + 75]/377 + 2y_0 + 2v_0 - 2y_0 - v_0 = v_0
$$
 Correct y'(0)!
Northridge

$$
43\,
$$